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H1: the alternative -- the opposite of the null => a change or difference

Goal: Make sure what we observed was unlikely to happen by chance.
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“sample space”, set of all possible outcomes. 

Error of RedImageGenNet Classifier
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:

fx : “probability density function” (pdf)

Continuous Distributions
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How to model?

Discretize them!
(group into discrete bins)

Continuous Distributions



Continuous Distributions

29But aren’t we throwing away information? 

P(bin=8) = .32

P(bin=12) = .08
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Continuous Distributions
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Continuous Distributions



Common Trap

●              does not yield a probability

○                      does

○ 𝓍 may be anything (ℝ)

■ thus,               may be > 1

32

Continuous Distributions



Common pdfs: Normal(0, 1)

33Credit: MIT Open Courseware: Probability and Statistics

Continuous Distributions



Common pdfs: Normal(0, 1)  (“standard normal”)

How to “standardize” any normal distribution:

1. subtract the mean, μ (aka “mean centering”)
2. divide by the standard deviation, σ

z = (x - μ)  / σ,   (aka “z score”)

34Credit: MIT Open Courseware: Probability and Statistics

Continuous Distributions
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Amount of sales of a blue case

“sample space”, set of all possible outcomes. 

Error of RedImageGenNet Classifier
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Normal

Discrete Random Variables

Binomial(n, p)

(like normal)
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Normal

Discrete Random Variables

Binomial(n, p)

(like normal)

Pro:               yields a probability!

Con: Not intuitively interpretable.



X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:

Binomial (n, p)

Discrete RVs
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H0:  The blue case is not selling more than average. 
      50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

What is the distribution of values we 
would expect if the null was true?
 -- the “null distribution”
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Binomial (N=50, p = 0.5)
PMF
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): Given null, what is the probability of the observed data or worse?

 -> If low enough, then we “reject the null (H
0
) in favor of H

1
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(thanks, Wikipedia)

https://en.wikipedia.org/wiki/P-value
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Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

Why?

A general framework for answering (yes/maybe) questions! 

● Are height and baldness related? 

● Is my deep predictive model better than the state of the art?

● Is the heat index of a community related to poverty?

● Is the heat index of a community related to poverty controlling for education rates?

● Does my website receive a higher average number of monthly visitors?

Hypothesis TestingFailing to “reject the null” does not mean 
the null is true. 



Hypothesis -- something one asserts to be true. 

Classical Approach: 

H0: null hypothesis -- some “default” value (usually that one’s hypothesis is false)

Why?

A general framework for answering (yes/maybe) questions! 

● Are height and baldness related? 

● Is my deep predictive model better than the state of the art?

● Is the heat index of a community related to poverty?

● Is the heat index of a community related to poverty controlling for education rates?

● Does my website receive a higher average number of monthly visitors?

Hypothesis TestingFailing to “reject the null” does not mean 
the null is true.  However, if the sample is 
large enough, it may be enough to say that 
the effect size (correlation, difference value, 
etc…) is not very meaningful.
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…`H1:  Most cats like redfish.     H0: Most cats don’t like redfish.
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Bonferroni’s Cats
General Question: Which fish do cats like? 

N = 50 cats; 32 like redfish; p = 0.016

…`H1:  Most cats like redfish.     H0: Most cats don’t like redfish.

   α = 0.05 -- probability threshold for happening upon the 
result even if it really doesn't exist.

What is the probability we happen upon once in ten times?

1 - p(not happening upon the result) = 1 - (1 - .05)10 
                                                                  =  1 - 0.599
       How to fix? 1 - (1 - (.05/10))10 = .0488

Is there a way we could adjust 

alpha to keep it low enough?

 The Bonferroni correction:

α
bonf

 = α / |h|



Type I, Type II Errors

(Orloff & Bloom, 2014)

Multi-test Correction 



significance level (“p-value”) = P(type I error) = P(Reject H0 | H0)  
(probability we are incorrect)

P(Reject H0 | H0)     P(Reject H0 | H1)

(Orloff & Bloom, 2014)(Orloff & Bloom, 2014)

Multi-test Correction 



significance level (“p-value”) = P(type I error) = P(Reject H0 | H0)  
(probability we are incorrect)

power = 1 - P(type II error) = P(Reject H0 | H1)
(probability we are correct)

P(Reject H0 | H0)     P(Reject H0 | HA)

(Orloff & Bloom, 2014)(Orloff & Bloom, 2014)

Multi-test Correction 
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The probability of making >=1 type 1 error. 
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(Orloff & Bloom, 2014)(Orloff & Bloom, 2014)

Multi-test Correction 
FWER: Family-wise error rate (Bonferroni corrects)

The probability of making >=1 type 1 error. 
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FDR: False discovery rate (Benjamini-Hochberg corrects)
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(Orloff & Bloom, 2014)(Orloff & Bloom, 2014)

Multi-test Correction 
FWER: Family-wise error rate (Bonferroni corrects)

The probability of making >=1 type 1 error. 
FWER = Pr(type1s>0) = 1 - Pr(type1s=0) = 1 - (1 - ɑ)m

FDR: False discovery rate (Benjamini-Hochberg corrects)
type1s / (type1s + correctRejects)

Proportion of false positives among *all* significant results.



 The Hypothesis Test “Algorithm”
Input: H

0
, obs, α

 obs_ts = test_stat(obs)

 null_dist = distribution of expected test_stat under H
0

 p(x<=obs_ts | H
0
) = cdf(null_dist, obs_ts)

 if p(x<=obs_ts | H
0
) < α: 

decision = “Reject H
0
!”

 else:

decision = “Accept H
0
.”

Output: decision



 The Multi-test "Algorithm"
Input: H

0
s, obs, α

decisions = []
α_adj = adjust(α) 

for H
0
 in H

0
s 

   obs_ts = test_stat(obs)
   null_dist = distribution of expected test_stat under H

0
   p(x<=obs_ts | H

0
) = cdf(null_dist, obs_ts)

   if p(x<=obs_ts | H
0
) < α_adj: 

  decisions.append(“Reject H
0
!”)

   else:
  decisions.append(“Accept H

0
.”)

Output: decisions



 The Multi-test "Algorithm"
Input: H

0
s, obs, α

decisions = []
α_adj = adjust(α) #e.g. adjust(α) = α/len(H

0
s)

for H
0
 in H

0
s 

   obs_ts = test_stat(obs)
   null_dist = distribution of expected test_stat under H

0
   p(x<=obs_ts | H

0
) = cdf(null_dist, obs_ts)

   if p(x<=obs_ts | H
0
) < α_adj: 

  decisions.append(“Reject H
0
!”)

   else:
  decisions.append(“Accept H

0
.”)

Output: decisions



Multi-test "Algorithm" Alternative
Input: H

0
s, obs, α

decisions = []
for H

0
 in H

0
s 

   obs_ts = test_stat(obs)
   null_dist = distribution of expected test_stat under H

0
   p(x<=obs_ts|H

0
) = cdf(null_dist, obs_ts)

   p_adj = inverse_adjust(p(x<=obs_ts|H
0
))#e.g. p*len(H

0
s)

   if p_adj < α: 
  decisions.append(“Reject H

0
!”)

   else:
  decisions.append(“Accept H

0
.”)

Output: decisions



1. Average multiple models 
(ensemble techniques)

2. Correct for multiple tests
(Bonferonni’s Principle)

3. Smooth data

4. “Plot” data (or figure out a way to 
look at a lot of it “raw”)

5. Interact with data

6. Know your “real” sample size

7. Correlation is not causation

8. Define metrics for success
(set a baseline)

9. Share code and data

10. The problem should drive solution

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)

Statistical Considerations for Big Data



● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regression (L2 Penalized)

● Lasso Regression (L1 Penalized)

Comparing Variables



Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

The expected value of Y, given 
that the random variable X is 
equal to some specific value, x.

Comparing Variables



Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor” = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

Regression:

goal: estimate the function r

Linear Regression (univariate version):

goal: find 𝛽
0
, 𝛽

1
 such that 

Linear Regression



more precisely

Linear Regression

Simple Linear Regression



Linear Regression

Simple Linear Regression

expected variance

intercept slope error



Linear Regression: Estimating Params

Simple Linear Regression

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

J(ꞵ) = ^         ^



Linear Regression: Estimating Params

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

J(ꞵ) = 

Method 1: Gradient Descent

initialize:      =       = 0;   rss(0) = ∞
for t in range(1, limit):
   1. calculate all
   2. if rss(t-1) - rss(t)  < ε: break #converged
   3. set:
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Linear Regression: Estimating Params

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

J(ꞵ) = 

Method 1: Gradient Descent

initialize:      =       = 0;   rss(0) = ∞
for t in range(1, limit):
   1. calculate all
   2. if rss(t-1) - rss(t) < ε: break #converged
   3. set:

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

convergence threshold 
(e.g. .00001)



Linear Regression: Estimating Params

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

J(ꞵ) = 

Method 1: Gradient Descent

initialize:      =       = 0;   rss(0) = ∞
for t in range(1, limit):
   1. calculate all
   2. if rss(t-1) - rss(t) < ε: break #converged
   3. set:

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

gradient with respect to 

given ꞵ.
gradient with respect to 

given ꞵ.



Linear Regression: Estimating Params

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

J(ꞵ) = 

Method 1: Gradient Descent

initialize:      =       = 0;   rss(0) = ∞
for t in range(1, limit):
   1. calculate all
   2. if rss(t-1) - rss(t) < ε: break #converged
   3. set:

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

gradient with respect to 

given ꞵ.
learning rate: scales the 
size of the update.



Linear Regression: Estimating Params

How to estimate intercept (ꞵ0) and slope intercept (ꞵ1)?

Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

J(ꞵ) = 

Method 1: Gradient Descent

initialize:      =       = 0;   rss(0) = ∞
for t in range(1, limit):
   1. calculate all
   2. if rss(t-1) - rss(t) < ε: break #converged
   3. set:

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)



Estimated intercept and slope

Residual: 
Least Squares Estimate.  Find        and        which minimizes 
the residual sum of squares:

via Gradient Descent

Start with      =       = 0

Repeat until convergence:
Calculate all 

via Direct Estimates
(normal equations)

Linear Regression

^          ^



Covariance

Pearson Product-Moment Correlation



Covariance

Correlation 

Pearson Product-Moment Correlation



Covariance

Correlation (standardized covariance)

Pearson Product-Moment Correlation



Method 2: Direct Estimates
(normal equations)

Covariance

Correlation

Pearson Product-Moment Correlation



Method 2: Direct Estimates
(normal equations)

Covariance

Correlation

Pearson Product-Moment Correlation



Method 2: Direct Estimates
(normal equations)

Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the 
standard deviation) before running linear regression, then:
  ??

Pearson Product-Moment Correlation



Method 2: Direct Estimates
(normal equations)

Covariance

Correlation

If one standardizes X and Y (i.e. subtract the mean and divide by the 
standard deviation) before running linear regression, then:
         = 0   and         = r    ---  i.e.        is the Pearson correlation!

Pearson Product-Moment Correlation



● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regression (L2 Penalized)

● Lasso Regression (L1 Penalized)

Comparing Variables



● Linear Regression

● Pearson Product-Moment Correlation

● Multiple Linear Regression

● (Multiple) Logistic Regression

● Ridge Regression (L2 Penalized)

● Lasso Regression (L1 Penalized)

Comparing Variables



Multiple Linear Regression

Simple Linear Regression

expected variance
Estimated intercept and slope

Residual: 



Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i (i.e. adding the intercept to X), then we can 
say:

Multiple Linear Regression



Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where       and      are vectors and

X is a matrix.

Multiple Linear Regression



Suppose we have multiple X that we’d like to fit to Y at once:

If we include and X
oi

 = 1 for all i, then we can say:

Or in vector notation across all i:

where       and      are vectors and

X is a matrix.

Estimating       :

Multiple Linear Regression



Suppose we have multiple independent variables that we’d like to fit to our 
dependent variable:

If we include and X
oi

 = 1 for all i. Then we can say:

Or in vector notation
     across all i: 

Where       and      are vectors and
X is a matrix.

Estimating       :

To test for significance of 
individual coefficient, j:

Multiple Linear Regression



T-Test for significance of hypothesis:
1) Calculate t
2) Calculate degrees of freedom:

df = N - (m+1)

3) Check probability in a t distribution:

To test for significance of 
individual coefficient, j:

Significance Testing



T-Test for significance of hypothesis:
1) Calculate t
2) Calculate degrees of freedom:

df = N - (m+1)

3) Check probability in a t distribution:
(df = v)

To test for significance of 
individual coefficient, j:

t



Summary
Hypothesis Testing:
A framework for deciding which differences/relationships matter. 

● Random Variables
● Distributions
● Hypothesis Testing Framework

Comparing Variables:
Metrics to quantify the difference or relationship between variables. 

● Simple Linear Regression, Correlation, Multiple Linear Regression, 
● Comparing Variables and Hypothesis Testing
● Regularized Linear Regression (for supervised ML)
● Multiple Hypothesis Testing



● Findings and Uncertainty

● Hypothesis Testing

● Bonferroni’s Cats 
● Multi-test Corrections

○ Family-wise Error Rate
○ False-Discovery Rate

● Correlation Metrics
○ Effect Size (coefficient)
○ Significance (whether p-value is below significance level)

Large-Scale Hypothesis Testing



Supplement: Not on exam



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)
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Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

Note: this is a probability here. 
In simple linear regression we wanted an expectation:  



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

Note: this is a probability here. 
In simple linear regression we wanted an expectation:  

(i.e. if p > 0.5 we can confidently predict Y
i
 = 1)

Note: this is a probability here. 
In simple linear regression we wanted an expectation:  



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

P(Y
i
 = 0 | X  = x)

Thus, 0 is class 0 
and 1 is class 1.



Logistic Regression

What if Yi ∊ {0, 1}? (i.e. we want “classification”)

We’re still learning a linear 
separating hyperplane, but 
fitting it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)



Logistic Regression
What if Yi ∊ {0, 1}? (i.e. we want “classification”)

To estimate      , 
one can use 
reweighted least 
squares:

(Wasserman, 2005; Li, 2010)



Uses of linear and logistic regression

1. Testing the relationship between variables given other 
variables. 𝛽 is an “effect size” -- a score for the magnitude 
of the relationship; can be tested for significance. 

2. Building a predictive model that generalizes to new data. 
Ŷ is an estimate value of Y given X.



Uses of linear and logistic regression

1. Testing the relationship between variables given other 
variables. 𝛽 is an “effect size” -- a score for the magnitude 
of the relationship; can be tested for significance. 

2. Building a predictive model that generalizes to new data. 
Ŷ is an estimate value of Y given X.
However, unless |X| <<< observatations then the model 
might “overfit”.

-> Regularized linear regression (a ML technique)



Statistical Considerations in Big Data

1. Correct for multiple tests
(Bonferonni’s Principle)

2. Average multiple models 
(ensemble techniques)

3. Smooth data

4. “Plot” data (or figure out a way to 
look at a lot of it “raw”)

5. Interact with data

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)
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