Large Scale

Hypothesis Testing

CSE545-Spring 2022
Stony Brook University
H. Andrew Schwartz

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Algorithms and Analyses
Similarity Search
Link Analysis Large Scale Hyp. Testing
Recommendation Systems
Deep Learning

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Algorithms and Analyses
Similarity Search
Link Analysis Large Scale Hyp. Testing Recommendation Systems

Deep Learning

Goal of Data Science

Goal: Generalizations
A model or summarization of the data.

The Data Whisperer

Goal: Generalizations
A model or summarization of the data.

Goal of Data Science

DATA

Goal: Generalizations
A model or summarization of the data.

Data-driven (evidence-based) decision

Goal of Data Science

DATA

Goal: Generalizations
A model or summarization of the data.

Discrete Finding(s) F is (likely) True

Data-driven (evidence-based) decision

Goal of Data Science

DATA

\square

Goal: Generalizations
A model or summarization of the data.

Discrete Finding(s) F is (likely) True

Data-driven (evidence-based) decision

Blue cell phones cases are selling the most.

The ResImageGenNet model is most accurate.

Those >70 have a greater mortality rate from the viral infection.

Goal of Data Science

The Data Whisperer

$$
\begin{aligned}
& \text { Hypotheses! } \\
& \text { Potential findings -- to be tested } \\
& \text { for happenstance. }
\end{aligned}
$$

Goal: Generalizations
A model or summarization of the data.

The Data Whisperer

> Hypotheses!
> Potential findings -- to be tested
> for happenstance.

Goal: Generalizations
A model or summarization of the data.

Hypothesis Testing

Also known as... "Don't be Dilbert's Boss!"
Hypothesis -- something one asserts to be true.

Hypothesis Testing

Also known as... "Don't be Dilbert's Boss!"
Hypothesis -- something one asserts to be true.
Formally, two types:
H_{0} : null hypothesis -- some "default" value; "null": nothing changes
H_{1} : the alternative -- the opposite of the null => a change or difference

Hypothesis Testing

H_{0} : null hypothesis -- some "default" value; "null": nothing changes H_{1} : the alternative -- the opposite of the null => a change or difference

Goal: Make sure what we observed was unlikely to happen by chance.
Thus, we want to know:
Given null, what is the probability of the observation or worse

Hypothesis Testing

H_{0} : null hypothesis -- some "default" value; "null": nothing changes H_{1} : the alternative -- the opposite of the null => a change or difference

Goal: Make sure what we observed was unlikely to happen by chance.
Thus, we want to know:
Given null, what is the probability of the observation or worse?
-> If low enough, then we "reject the null $\left(H_{0}\right)$ in favor of H_{1}."

Hypothesis Testing

H_{0} : null hypothesis -- some "default" value; "null": nothing changes H_{1} : the alternative -- the opposite of the null => a change or difference Goal: Make sure what we observed was unlikely to happen by chance. Thus, we want to know:

Given null, what is the probability of the observation or worse?
-> If low enough, then we "reject the null $\left(H_{0}\right)$ in favor of H_{1}."
H_{0} : The blue case is not selling more than average.

The Hypothesis Test "Algorithm"

observations (i.e. data) level of significance

Input: H_{θ}, obs, α

Output: decision

H_{0} : The blue case is not selling more than average.

The Hypothesis Test "Algorithm"

observations (ie. data) level of significance

Input: H_{θ}, obs,
probability of what we observed or worse (ie. more extreme) $p\left(x>=o b s \mid H_{0}\right)<\alpha$

Output: decision

H_{0} : The blue case is not selling more than average.

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average.

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
Conditional is sometimes evaluated indirectly by first finding the "critical value" of some measurement such that:
if measurement $>$ critical_value then $p(o b s / H O)<\alpha$
if p(x>=obs | H_{θ}) < α :
decision = "Reject H_{\odot} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average.

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average.

The Hypothesis Test "Algorithm"

Input: H_{0}, obs, α

What is the distribution of values we would expect if the null was true?
-- the "null distribution"
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$: decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average.

Probability Distributions: Review

\mathbf{X} : A mapping from $\boldsymbol{\Omega}$ to 圆 that describes the question we care about in practice.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

X is a discrete random variable if it takes only a countable number of values.

Probability Distributions: Review

\mathbf{X} : A mapping from Ω to 圆 that describes the question we care about in practice. \downarrow
"sample space", set of all possible outcomes.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

X is a discrete random variable if it takes only a countable number of values.

Probability Distributions: Review
\mathbf{X} : A mapping from $\boldsymbol{\Omega}$ to 圆 that describes the question we care about in practice. \downarrow "sample space", set of all possible outcomes.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

Error of RedImageGenNet Classifier

X is a discrete random variable
if it takes only a countable number of values.

Amount of sales of a blue case

Continuous Distributions

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X is a continuous random variable if there exists a function $f x$ such that:

$$
\begin{gathered}
f_{X}(x) \geq 0, \text { for all } x \in X \\
\int_{-\infty}^{\infty} f_{X}(x) d x=1, \text { and } \\
\mathrm{P}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
\end{gathered}
$$

Continuous Distributions

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X is a continuous random variable if there exists a function $f x$ such that:

$$
\begin{gathered}
f_{X}(x) \geq 0, \text { for all } x \in X \\
\int_{-\infty}^{\infty} f_{X}(x) d x=1, \text { and } \\
\mathrm{P}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
\end{gathered}
$$

f_{x} : "probability density function" (pdf)

Continuous Distributions

How to model?

Continuous Distributions

But aren't we throwing away information?

Continuous Distributions

Continuous Distributions

Continuous Distributions

Common Trap

- $f_{X}(x)$ does not yield a probability
- $\int_{a}^{b} f_{X}(x) d x$ does

- \boldsymbol{x} may be anything (\mathbb{R})
- thus, $f_{X}(x)$ may be >1

Continuous Distributions

Common pdfs: $\operatorname{Normal}(0,1)$

$$
P(-1 \leq Z \leq 1) \approx .68, \quad P(-2 \leq Z \leq 2) \approx .95, \quad P(-3 \leq Z \leq 3) \approx .99
$$

Continuous Distributions

Common pdfs: $\operatorname{Normal}(0,1)$ ("standard normal")
How to "standardize" any normal distribution:

1. subtract the mean, μ (aka "mean centering")
2. divide by the standard deviation, σ
$z=(x-\mu) / \sigma, \quad$ aka "z score")

Probability Distributions: Review
\mathbf{X} : A mapping from $\boldsymbol{\Omega}$ to 圆 that describes the question we care about in practice. \downarrow "sample space", set of all possible outcomes.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

Error of RedImageGenNet Classifier

X is a discrete random variable
if it takes only a countable number of values.

Amount of sales of a blue case

Discrete Random Variables

For a given discrete random variable X ,
probability mass function (imf),
$f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

X is a discrete random variable if it takes only a countable number of values.

Amount of sales of a blue case

Was a single sale a blue case: $\{0,1\}$

Discrete Random Variables

For a given discrete random variable X ,
probability mass function (imf),
$f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

X is a discrete random variable if it takes only a countable number of values.

Amount of sales of a blue case

Was a single sale a blue case: $\{0,1\}$

Discrete Random Variables

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

X is a discrete random variable if it takes only a countable number of values.

Amount of sales of a blue case

Was a single sale a blue case: $\{0,1\}$

Discrete Random Variables

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Normal

Discrete Random Variables

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Normal

Discrete RVs

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

For a given discrete random variable X , probability mass function (pmf), $f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

X is a discrete random variable if it takes only a countable number of values.

$$
\begin{gathered}
\sum_{i} f_{X}(x)=1 \\
F_{X}(x)=\mathrm{P}(X \leq x)=\sum_{x_{i} \leq x} f_{X}(x)
\end{gathered}
$$

The Hypothesis Test "Algorithm"

Input: H_{0}, observations, α

What is the distribution of values we would expect if the null was true?
-- the "null distribution"
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$: decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average.

The Hypothesis Test "Algorithm"

Binomial ($\mathrm{N}=50, \mathrm{p}=0.5$) PM

What is the distribution of values we would expect if the null was true?
-- the "null distribution"
H_{0} : The blue case is not selling more than average.
50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{e}
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average.
50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{e}
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average. Observed 33 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

H_{0} : The blue case is not selling more than average. Observed 33 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

H_{0} : The blue case is not selling more than average. Observed 33 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{0}
$p\left(x>=o b s \mid H_{\theta}\right)=$
if $p\left(x>=o b s \mid H_{0}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average. Observed 33 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{0}
$p\left(x>=o b s \mid H_{\theta}\right)=\operatorname{sum}\left(p m f\left(n u l l_{-} d i s t, o\right)\right.$ for o in range(obs,))
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision
H_{0} : The blue case is not selling more than average. Observed 33 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{0}
$p\left(x>=o b s \mid H_{\ominus}\right)=1-c d f\left(n u l l _d i s t, ~ o b s\right)$
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision

H_{0} : The blue case is not selling more than average. Observed 33 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{θ}
$p\left(x>=o b s \mid H_{\odot}\right)=1-c d f\left(n u l l _d i s t, ~ o b s\right)=0.016$
if $p\left(x>=o b s \mid H_{a}\right)<\alpha$: decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."
Output: decision

H_{0} : The blue case is not selling more than average. Observed 33 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{e}
$p\left(x>=o b s \mid H_{0}\right)=1-c d f\left(n u l l_{-} d i s t, o b s\right)=0.239$
if $p\left(x>=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision $=$ "Accept H_{0}."
Output: decision

H_{0} : The blue case is not selling more than average. Observed 28 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α
null_dist $=$ distribution of expected values under H_{e}
$p\left(x<=o b s \mid H_{\theta}\right)=c d f\left(n u l l _d i s t, o b s\right)$
if $p\left(x<=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0} 。"
Output: decision
H_{0} : The blue case is not selling less than average. Observed 32 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α

```
null_dist = distribution of expected obs under H}\mp@subsup{\textrm{H}}{0}{
p(x<=obs | H}\mp@subsup{H}{\ominus}{})= cdf(null_dist, obs
if p(x<=obs | H
    decision = "Reject He!"
else:
decision = "Accept H}\mp@subsup{\mp@code{0}}{0}{}.
```

Output: decision
H_{0} : The blue case is not selling less than average. Observed 36 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α

```
obs_ts = test_stat(obs)
```

null_dist $=$ distribution of expected obs under H^{0}
$p\left(x<=o b s \mid H_{\ominus}\right)=c d f\left(n u l l _d i s t, ~ o b s\right)$
if $p\left(x<=o b s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{0}."

Output: decision
H_{0} : The blue case is not selling less than average. Observed 36 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α

```
obs_ts = test_stat(obs)
```

null_dist = distribution of expected test_stat under H_{0}
$p\left(x<=o b s _t s \mid H_{\odot}\right)=c d f\left(n u l l_{-} d i s t, ~ o b s _t s\right)$
if $p\left(x<=o b s _t s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{\odot}."

Output: decision
H_{0} : The blue case is not selling less than average. Observed 36 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

Hypothesis Testing

$\mathrm{P}\left(\mathrm{D} \mid H_{0}\right)$: Given null, what is the probability of the observed data or worse?
-> If low enough, then we "reject the null $\left(H_{0}\right)$ in favor of H_{1}."

Hypothesis Testing

$P\left(D \mid H_{0}\right)$: Given null, what is the probability of the observed data or worse?
-> If low enough, then we "reject the null $\left(H_{0}\right)$ in favor of H_{1} "

A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Hypothesis Testing

$\mathrm{P}\left(D \mid H_{0}\right)$: Given null, what is the probability of the observed data or worse?
-> If low enough, then we "reject the null $\left(H_{0}\right)$ in favor of H_{1}."

A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Hypothesis Testing

$\mathrm{P}\left(\mathrm{D} \mid \mathrm{H}_{0}\right)$: Given null, what is the probability of the observed data or worse?
 -> If low enough, then we "reject the null $\left(H_{0}\right)$ in favor of H_{1}."

A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

The Hypothesis Test "Algorithm"

Input: H_{θ}, obs, α

```
obs_ts = test_stat(obs)
```

null_dist = distribution of expected test_stat under H_{0}
$p\left(x<=o b s _t s \mid H_{\odot}\right)=c d f\left(n u l l_{-} d i s t, ~ o b s _t s\right)$
if $p\left(x<=o b s _t s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:
decision = "Accept H_{\odot}."

Output: decision
H_{0} : The blue case is not selling less than average. Observed 36 blue sales 50 sales; 2 colors (blue and red); Thus, average would be 25 blue sales

Hypothesis Testing

Why?

Hypothesis Testing

Why?
A general framework for answering (yes/no) questions!

Hypothesis Testing

Why?
A general framework for answering (yes/no) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?

Hypothesis Testing

Why?
A general framework for answering (yes/no) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?
- Is the heat index of a community related to poverty?
- Is the heat index of a community related to poverty controlling for education rates?
- Does my website receive a higher average number of monthly visitors?

Hypothesis Testir

Failing to "reject the null" does not mean the null is true.

Why?

A general framework for answering (yes/maybe) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?
- Is the heat index of a community related to poverty?
- Is the heat index of a community related to poverty controlling for education rates?
- Does my website receive a higher average number of monthly visitors?

Hypothesis Testir
Failing to "reject the null" does not mean the null is true. However, if the sample is large enough, it may be enough to say that the effect size (correlation, difference value, etc...) is not very meaningful.

A general framework for answering (yes/maybe) questions!

- Are height and baldness related?
- Is my deep predictive model better than the state of the art?
- Is the heat index of a community related to poverty?
- Is the heat index of a community related to poverty controlling for education rates?
- Does my website receive a higher average number of monthly visitors?

Bonferroni's Cats

General Question: Which fish do cats like?

10 :

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats

H_{i} : Most cats like redfish. H_{0} : Most cats don't like redfish.

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$

H_{i} : Most cats like redfish. H_{0} : Most cats don't like redfish.

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$

Now suppose instead of just redfish, you wanted to ask the same question for 10 kinds of fish: $\mathrm{H}_{1,1}$: Most cats like redfish; $H_{1,2}$: Most cats like bluefish; $H_{1,3}$: Most cats like orangefish; ... with $\alpha=0.05$, can you still conclude most cats like redfish?

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$

Now suppose instead of just redfish, you wanted to ask the same question for 10 kinds of fish: $H_{1,1}$: Most cats like redfish; $H_{1,2}$: Most cats like bluefish; $H_{1,3}$: Most cats like orangefish; ... with $\alpha=0.05$, can you still conclude most cats like redfish?
hint: $P(1$ sig $)=1-P($ no sig $)=1-(1-0.05)^{10}=0.40$

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$
$\boldsymbol{\alpha}=\mathbf{0 . 0 5}$-- probability threshold for happening upon the result even if it really doesn't exist.

What is the probability we happen upon once in ten times?

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$
$\alpha=0.05$-- probability threshold for happening upon the result even if it really doesn't exist.

What is the probability we happen upon once in ten times?
4) $1-p($ not happening upon the result $)=1-(1-.05)^{10}$

$$
=1-0.599=.4
$$

H_{1} : Most can

alo

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$
$\alpha=0.05$-- probability threshold for happening upon the result even if it really doesn't exist.

What is the probability we happen upon once in ten times?
5 $1-\mathrm{p}$ (not happening upon the result) $=1-(1-.05)^{10}$

$$
=1-0.599=.4
$$

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$
$\alpha=0.05$-- probability threshold for happening upon the result even if it really doesn't exist.

Is there a way we could adjust alpha to keep it low enough?
po once in ten times?

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$

Is there a way we could adjust
happening upon the alpha to keep it low enough?

The Bonferroni correction:
$\alpha_{\text {bonf }}=\alpha /|h|$
po once in ten times?
$=1-(1-.05)^{10}$
$=1-0.599=.4$
H_{1} : Most car

Bonferroni's Cats

General Question: Which fish do cats like?
$N=50$ cats; 32 like redfish; $p=0.016$

Is there a way we could adjust
happening upon the alpha to keep it low enough?

The Bonferroni correction:
$\alpha_{\text {bonf }}=\alpha /|h|$
po once in ten times?
$=1-(1-.05)^{10}$
= 1-0.599
How to fix? $1-(1-(.05 / 10))^{10}=.0488$
H_{1} : Most cars

Multi-test Correction

Type I, Type II Errors

Multi-test Correction

significance level ("p-value") $=P($ type I error $)=P\left(\right.$ Reject $\left.H_{0} \mid H_{0}\right)$ (probability we are incorrect)

(Orloff \& Bloom, 2014)

Multi-test Correction

significance level ("p-value") $=P($ type I error $)=P\left(\right.$ Reject $\left.H_{0} \mid H_{0}\right)$ (probability we are incorrect)

```
power = 1 - P(type II error) = P(Reject H}\mp@subsup{\mathbf{H}}{0}{}|\mp@subsup{H}{1}{}
```

(probability we are correct)

	H_{0}	H_{A}
Reject H_{0}	$\mathbf{P}\left(\right.$ Reject $\left.\mathrm{H}_{0} \mid \mathrm{H}_{0}\right)$	$\mathbf{P}\left(\right.$ Reject $\left.\mathbf{H}_{0} \mid \mathrm{H}_{\mathrm{A}}\right)$

(Orloff \& Bloom, 2014)

Multi-test Correction

FWER: Family-wise error rate (Bonferroni Corrects) The probability of making >=1 type 1 error. $F W E R=\operatorname{Pr}($ type $1 \mathrm{~s}>0)=1-\operatorname{Pr}($ type1s $=0)=1-(1-a)^{m}$

(Orloff \& Bloom, 2014)

Multi-test Correction

FWER: Family-wise error rate (Bonferroni Corrects) The probability of making >=1 type 1 error. $F W E R=\operatorname{Pr}($ type $1 \mathrm{~s}>0)=1-\operatorname{Pr}($ type1s $=0)=1-(1-a)^{m}$

$$
1-(1-(.05 / 10))^{10}=.0488
$$

(Orloff \& Bloom, 2014)

Multi-test Correction

FWER: Family-wise error rate (Bonferroni corrects) The probability of making >=1 type 1 error. $F W E R=\operatorname{Pr}($ type $1 \mathrm{~s}>0)=1-\operatorname{Pr}($ type $1 \mathrm{~s}=0)=1-(1-a)^{m}$

FDR: False discovery rate (Benjamini-Hochberg corrects) type1s / (type1s + correctRejects)

(Orloff \& Bloom, 2014)

Multi-test Correction

FWER: Family-wise error rate (Bonferroni corrects) The probability of making >=1 type 1 error. $F W E R=\operatorname{Pr}($ type $1 \mathrm{~s}>0)=1-\operatorname{Pr}($ type1s $=0)=1-(1-a)^{m}$

FDR: False discovery rate (Benjamini-Hochberg corrects) type1s / (type1s + correctRejects)

Proportion of false positives among *all* significant results.

The Hypothesis Test "Algorithm"

Input: H_{0}, obs, α

```
obs_ts = test_stat(obs)
```

null_dist $=$ distribution of expected test_stat under H_{e}
$p\left(x<=o b s _t s \mid H_{\ominus}\right)=c d f\left(n u l l_{-} d i s t, ~ o b s _t s\right)$
if $p\left(x<=o b s _t s \mid H_{\theta}\right)<\alpha$:
decision = "Reject H_{0} !"
else:

$$
\text { decision = "Accept } H_{0} \text {." }
$$

Output: decision

The Multi-test "Algorithm"

Input: $H_{0} s, o b s, \alpha$
decisions = []
a_adj = adjust(α)
for H_{0} in $H_{0} s$
obs_ts = test_stat(obs)
null_dist = distribution of expected test_stat under H_{0}
$p\left(x<=o b s _t s \mid H_{\theta}\right)=c d f\left(n u l l _d i s t, ~ o b s _t s\right)$
if $p\left(x<=o b s _t s \mid H_{0}\right)<\alpha _a d j:$
decisions.append("Reject H_{\bullet} !")
else:
decisions.append("Accept H_{0}.")
Output: decisions

The Multi-test "Algorithm"

Input: $H_{0} s, o b s, \alpha$
decisions = []
a_adj = adjust(α) \#e.g. adjust(α) = $\alpha / \operatorname{len}\left(H_{0} s\right)$
for H_{0} in $H_{0} s$
obs_ts = test_stat(obs)
null_dist = distribution of expected test_stat under H_{0}
$p\left(x<=o b s _t s \mid H_{\theta}\right)=c d f\left(n u l l _d i s t, ~ o b s _t s\right)$
if $p\left(x<=o b s _t s \mid H_{0}\right)<\alpha _a d j:$
decisions.append("Reject H_{\bullet} !")
else:
decisions.append("Accept H_{0}.")
Output: decisions

Multi-test "Algorithm" Alternative

Input: $H_{0} s$, obs, α
decisions = []
for H_{0} in $\mathrm{H}_{0} \mathrm{~s}$
obs_ts = test_stat(obs)
null_dist $=$ distribution of expected test_stat under H_{0}
$p\left(x<=o b s _t s \mid H_{\theta}\right)=c d f\left(n u l l _d i s t\right.$, obs_ts)
p_adj = inverse_adjust(p(x<=obs_ts|H$\left.H_{\ominus}\right)$)\#e.g. p*len $\left(H_{e} s\right)$
if p_adj < α :
decisions.append("Reject H_{\ominus} !")
else:
decisions.append("Accept H_{θ}.")
Output: decisions

Statistical Considerations for Big Data

1. Average multiple models (ensemble techniques)
2. Correct for multiple tests (Bonferonni's Principle)
3. Smooth data
4. "Plot" data (or figure out a way to look at a lot of it "raw")
5. Know your "real" sample size
6. Correlation is not causation
7. Define metrics for success (set a baseline)
8. Share code and data
9. The problem should drive solution
10. Interact with data

Comparing Variables

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Alultiple) Logistic Regression
- Ridge Regression (L2 Penalized)
- Lasso Regression (L1 Penalized)

Comparing Variables

Finding a linear function based on X to best yield Y.
X = "covariate" = "feature" = "predictor" = "regressor" = "independent variable"
$\mathrm{Y}=$ "response variable" = "outcome" = "dependent variable"
Regression: $\quad r(x)=\mathrm{E}(Y \mid X=x)$

The expected value of Y, given that the random variable X is equal to some specific value, x.

Linear Regression

Finding a linear function based on X to best yield Y.
$\mathrm{X}=$ "covariate" $=$ "feature" = "predictor" = "regressor" = "independent variable"
$\mathrm{Y}=$ "response variable" = "outcome" = "dependent variable"
Regression:

$$
r(x)=\mathrm{E}(Y \mid X=x)
$$

goal: estimate the function r
Linear Regression (univariate version):
goal: find β_{0}, β_{1} such that

$$
r(x)=\beta_{0}+\beta_{1} x
$$

$$
r(x) \approx \mathrm{E}(Y \mid X=x)
$$

Linear Regression

Simple Linear Regression $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$ where $\mathbf{E}\left(\epsilon_{i} \mid X_{i}\right)=0$ and $\mathbf{V}\left(\epsilon_{i} \mid X_{i}\right)=\sigma^{2}$

Linear Regression

expected variance

Linear Regression: Estimating Params

Simple Linear Regression $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

$$
\text { where } \mathbf{E}\left(\epsilon_{i} \mid X_{i}\right)=0 \text { and } \mathbf{V}\left(\epsilon_{i} \mid X_{i}\right)=\sigma^{2}
$$

How to estimate intercept $\left(\square_{0}\right)$ and slope intercept $\left(\square_{1}\right)$?
Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
J(\square)={ }_{R S S}=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}
$$

Linear Regression: Estimating Params

Method 1: Gradient Descent

initialize: $\hat{\beta}_{0}=\hat{\beta}_{1}=0 ;$ rss $^{(0)}=\infty$ for t in range(1, limit):

1. calculate all $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$
2. if rss ${ }^{(t-1)}-$ rss $^{\left.(t)^{(}\right)}<\varepsilon$: break \#converged
3. set:

$$
\begin{aligned}
& \hat{\beta}_{0}=\hat{\beta}_{0}-\alpha\left(\sum_{i=1}^{n} \hat{Y}_{i}-Y_{i}\right) \\
& \hat{\beta}_{1}=\hat{\beta}_{1}-\alpha\left(\sum_{i=1}^{n} X_{i}\left(\hat{Y}_{i}-Y_{i}\right)\right)
\end{aligned}
$$

Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
J(\square)={ }_{R S S}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Linear Regression: Estimating Params

Method 1: Gradient Descent

 initialize: $\hat{\beta}_{0}=\hat{\beta}_{1}=0 ;$ rss $^{(0)}=\infty$ for t in range(1, limit):1. calculate all $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$
2. if rss ${ }^{(t-1)}-$ rss $^{(t)}<\varepsilon$: break \#converged
3. set:

$$
\begin{aligned}
& \hat{\beta}_{0}=\hat{\beta}_{0}-\alpha\left(\sum_{i=1}^{n} \hat{Y}_{i}-Y_{i}\right) \\
& \hat{\beta}_{1}=\hat{\beta}_{1}-\alpha\left(\sum_{i=1}^{n} X_{i}\left(\hat{Y}_{i}-Y_{i}\right)\right)
\end{aligned}
$$

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
J(\square)=R S S=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Linear Regression: Estimating Params

Least Squares Estimate Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares.

$$
J(\square)=\operatorname{RSC}^{2} S=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Linear Regression: Estimating Params

Method 1: Gradient Descent

 initialize: $\hat{\beta}_{0}=\hat{\beta}_{1}=0 ;$ rss $^{(0)}=\infty$ for t in range(1, limit):1. calculate all $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$
2. if rss ${ }^{(t-1)}-$ rss $^{(t)^{(}<\varepsilon \text { : break \#converged }}$
3. set:

$$
\begin{aligned}
& \text { Least Squares Estimate. Find } \hat{\beta}_{0} \text { and } \hat{\beta}_{1} \text { which minimizes }
\end{aligned}
$$ the residual sum of squares:

$$
J(\square)=R S S=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Linear Regression: Estimating Params

Method 1: Gradient Descent

 initialize: $\hat{\beta}_{0}=\hat{\beta}_{1}=0 ;$ rss $^{(0)}=\infty$ for t in range(1, limit):1. calculate all $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$
2. if rss ${ }^{(t-1)}-$ rss $^{(t)}<\varepsilon$: break \#converged
3. set:

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)
Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
J(\square)=R S S=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Linear Regression: Estimating Params

Method 1: Gradient Descent

 initialize: $\hat{\beta}_{0}=\hat{\beta}_{1}=0 ;$ rss $^{(0)}=\infty$ for t in range(1, limit):1. calculate all $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$
2. if rss ${ }^{(t-1)}-$ rss $^{(t)^{2}}<\varepsilon$: break \#converged
3. set:

$$
\begin{aligned}
& \hat{\beta}_{0}=\hat{\beta}_{0}-\alpha\left(\sum_{i=1}^{n} \hat{Y}_{i}-Y_{i}\right) \\
& \hat{\beta}_{1}=\hat{\beta}_{1}-\alpha\left(\sum_{i=1}^{n} X_{i}\left(\hat{Y}_{i}-Y_{i}\right)\right)
\end{aligned}
$$

(http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
J(\square)=R S S=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Linear Regression

via Gradient Descent

Start with $\hat{\beta}_{0}=\hat{\beta}_{1}=0$
Repeat until convergence:
Calculate all \hat{Y}_{i}

$$
\begin{aligned}
& \hat{\beta}_{0}=\hat{\beta}_{0}-\alpha\left(\sum_{i=1}^{n} \hat{Y}_{i}-Y_{i}\right) \\
& \hat{\beta}_{1}=\hat{\beta}_{1}-\alpha\left(\sum_{i=1}^{n} X_{i}\left(\hat{Y}_{i}-Y_{i}\right)\right)
\end{aligned}
$$

via Direct Estimates (normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Least Squares Estimate. Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ which minimizes the residual sum of squares:

$$
\text { RSSS }=\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Correlation

$$
r=r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Correlation (standardized covariance)

$$
\begin{aligned}
r & =r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{s_{X}}\right)\left(\frac{Y_{i}-\bar{Y}}{s_{Y}}\right)
\end{aligned}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Correlation

$$
\begin{aligned}
r & =r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{s_{X}}\right)\left(\frac{Y_{i}-\bar{Y}}{s_{Y}}\right)
\end{aligned}
$$

Method 2: Direct Estimates (normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Pearson Product-Moment Correlation

Covariance
$\operatorname{Cov}(X, Y)=\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y)$

$$
=\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
$$

Correlation

$$
\begin{aligned}
r & =r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-X}{s_{X}}\right)\left(\frac{Y_{i}-Y}{s_{Y}}\right)
\end{aligned}
$$

Method 2: Direct Estimates (normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Correlation

$$
\begin{aligned}
r & =r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-X}{s_{X}}\right)\left(\frac{Y_{i}-Y}{s_{Y}}\right)
\end{aligned}
$$

If one standardizes X and Y (i.e. subtract the mean and divide by the standard deviation) before running linear regression, then:

Pearson Product-Moment Correlation

Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{E}(X Y)-\mathbf{E}(X) \mathbf{E}(Y) \\
& =\mathbf{E}((X-\bar{X})(Y-\bar{Y}))
\end{aligned}
$$

Correlation

$$
\begin{aligned}
r & =r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-X}{s_{X}}\right)\left(\frac{Y_{i}-Y}{s_{Y}}\right)
\end{aligned}
$$

If one standardizes X and Y (i.e. subtract the mean and divide by the standard deviation) before running linear regression, then:
$\hat{\beta}_{0}=0$ and $\hat{\beta}_{1}=r$--- i.e. $\hat{\beta}_{1}$ is the Pearson correlation!

Method 2: Direct Estimates (normal equations)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Comparing Variables

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Mulliple) Logistic Regression
- Ridge Regression (L2 Penalized)
- Lasso Regression (L1 Penalized)

Comparing Variables

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Mulliple) Logistic Regression
- Ridge Regression (L2 Penalized)
- Lasso Regression (L1 Penalized)

Multiple Linear Regression

Simple Linear Regression $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

$$
\text { where } \mathbf{E}\left(\epsilon_{i} \mid X_{i}\right)=0 \text { and } \mathbf{V}\left(\epsilon_{i} \mid X_{i}\right)=\sigma^{2}
$$

expected variance
Estimated intercept and slope

$$
\begin{aligned}
\hat{r}(x)= & \hat{\beta}_{0}+\hat{\beta}_{1} x \quad \hat{Y}_{i}=\hat{r}\left(X_{i}\right) \\
& \text { Residual: } \quad \hat{\epsilon}_{i}=Y_{i}-\hat{Y}_{i}
\end{aligned}
$$

Multiple Linear Regression

Suppose we have multiple X that we'd like to fit to Y at once:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

If we include and $X_{o i}=1$ for all i (i.e. adding the intercept to X), then we can say:

$$
Y_{i}=\sum_{j=0}^{m} \beta_{j} X_{i j}+\epsilon_{i}
$$

Multiple Linear Regression

Suppose we have multiple X that we'd like to fit to Y at once:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

If we include and $X_{o i}=1$ for all i, then we can say:

$$
Y_{i}=\sum_{j=0}^{m} \beta_{j} X_{i j}+\epsilon_{i}
$$

Or in vector notation across all i:

$$
Y=X \beta+\epsilon
$$

where β and ϵ are vectors and X is a matrix.

Multiple Linear Regression

Suppose we have multiple X that we'd like to fit to Y at once:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

If we include and $X_{o i}=1$ for all i, then we can say:

$$
Y_{i}=\sum_{j=0}^{m} \beta_{j} X_{i j}+\epsilon_{i}
$$

Or in vector notation across all i:

$$
Y=X \beta+\epsilon
$$

where β and ϵ are vectors and X is a matrix.

Estimating β :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Multiple Linear Regression

Suppose we have multiple independent variables that we'd like to fit to our dependent variable: $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}$

If we include and $\mathrm{X}_{\mathrm{oi}}=1$ for all i. Then we can say:

$$
Y_{i}=\sum_{j=0}^{m} \beta_{j} X_{i j}+\epsilon_{i}
$$

Or in vector notation

$$
\text { across all i: } \quad Y=X \beta+\epsilon
$$

Where β and ϵ are vectors and X is a matrix.

Estimating β :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Significance Testing

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}
$$

$$
s^{2}=\frac{R S S}{d f}
$$

To test for significance of individual coefficient, j :
$t=\frac{\hat{\beta}_{j}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\frac{s^{2}}{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)^{2}}}}$

T-Test for significance of hypothesis:

1) Calculate t
2) Calculate degrees of freedom:

$$
d f=N-(m+1)
$$

3) Check probability in a t distribution:

$\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{m} X_{m 1}+\epsilon_{i}$

T-Test for significance of hypothesis:

1) Calculate t
2) Calculate degrees of freedom:

To test for significance of individual coefficient, j :
$t=\frac{\hat{\beta}_{j}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\frac{s^{2}}{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)^{2}}}}$

$$
d f=N-(m+1)
$$

3) Check probability in a t distribution: ($d f=v$)

Summary

Hypothesis Testing:

A framework for deciding which differences/relationships matter.

- Random Variables
- Distributions
- Hypothesis Testing Framework

Comparing Variables:

Metrics to quantify the difference or relationship between variables.

- Simple Linear Regression, Correlation, Multiple Linear Regression,
- Comparing Variables and Hypothesis Testing
- Regularized Linear Regression (for supervised ML)
- Multiple Hypothesis Testing

Large-Scale Hypothesis Testing

- Findings and Uncertainty
- Hypothesis Testing
- Bonferroni's Cats
- Multi-test Corrections
- Family-wise Error Rate
- False-Discovery Rate
- Correlation Metrics
- Effect Size (coefficient)
- Significance (whether p-value is below significance level)

Supplement: Not on exam

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \underbrace{\mathbf{P}\left(Y_{i}=1 \mid X=x\right)}=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

Note: this is a probability here.
In simple linear regression we wanted an expectation:

$$
r(x)=\mathrm{E}(Y \mid X=x)
$$

Logistic Regression

What if $\mathrm{Y}_{\mathrm{i}} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \underbrace{\mathbf{P}\left(Y_{i}=1 \mid X=x\right)}=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

Note: this is a probability here.
In simple linear regression we wanted an expectation:

$$
r(x)=\mathrm{E}(Y \mid X=x)
$$

(i.e. if $\mathrm{p}>0.5$ we can confidently predict $\mathrm{Y}_{\mathrm{i}}=1$)

Logistic Regression

What if $\mathrm{Y}_{\mathrm{i}} \in\{0,1\}$? (i.e. we want "classification")

$$
\begin{array}{r}
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}} \\
\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}
\end{array}
$$

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

$$
\operatorname{logit(p_{i})=\operatorname {log}(\frac {p_{i}}{1-p_{i}})=\beta _{0}+\sum _{j=1}^{m}\beta _{j}x_{ij}} \begin{gathered}
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}}=0 \mid X=x\right) \\
\text { Thus, } 0 \text { is class } 0 \\
\text { and } 1 \text { is class } 1 .
\end{gathered}
$$

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}
$$

$$
\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}
$$

We're still learning a linear separating hyperplane, but fitting it to a logit outcome.
(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

Logistic Regression

What if $Y_{i} \in\{0,1\}$? (i.e. we want "classification")

$$
\begin{aligned}
p_{i} \equiv p_{i}(\beta) \equiv \mathbf{P}\left(Y_{i}=1 \mid X=x\right)=\frac{e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}}{1+e^{\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}}} \\
\operatorname{logit}\left(p_{i}\right)=\log \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\sum_{j=1}^{m} \beta_{j} x_{i j}
\end{aligned}
$$

To estimate β, one can use reweighted least squares:
(Wasserman, 2005; Li, 2010)
set $\hat{\beta}_{0}=\ldots=\hat{\beta}_{m}=0$ (remember to include an intercept)

1. Calculate p_{i} and let W be a diagonal matrix where element $(i, i)=p_{i}\left(1-p_{i}\right)$.
2. Set $z_{i}=\operatorname{logit}\left(p_{i}\right)+\frac{Y_{i}-p_{i}}{p_{i}\left(1-p_{i}\right)}=X \hat{\beta}+\frac{Y_{i}-p_{i}}{p_{i}\left(1-p_{i}\right)}$
3. Set $\hat{\beta}=\left(X^{T} W X\right)^{-1} X^{T} W z / /$ weighted lin. reg. of Z on Y. 4. Repeat from 1 until $\hat{\beta}$ converges.

Uses of linear and logistic regression

1. Testing the relationship between variables given other variables. β is an "effect size" -- a score for the magnitude of the relationship; can be tested for significance.
2. Building a predictive model that generalizes to new data. \hat{Y} is an estimate value of Y given X.

Uses of linear and logistic regression

1. Testing the relationship between variables given other variables. β is an "effect size" -- a score for the magnitude of the relationship; can be tested for significance.
2. Building a predictive model that generalizes to new data. \hat{Y} is an estimate value of Y given X. However, unless $|X| \lll$ observatations then the model might "overfit".
-> Regularized linear regression (a ML technique)

Statistical Considerations in Big Data

1. Correct for multiple tests (Bonferonni's Principle)
2. Average multiple models (ensemble techniques)
3. Smooth data
4. "Plot" data (or figure out a way to look at a lot of it "raw")
5. Interact with data

Statistical Considerations in Big Data

1. Correct for multiple tests (Bonferonni's Principle)
2. Average multiple models (ensemble techniques)
3. Smooth data
4. "Plot" data (or figure out a way to look at a lot of it "raw")
5. Interact with data
6. Know your "real" sample size
7. Correlation is not causation
8. Define metrics for success (set a baseline)
9. Share code and data
10. The problem should drive solution
